Covariate Selection in Hierarchical Models of Hospital Admission Counts: a Bayes Factor Approach

نویسندگان

  • Susan L. Rosenkranz
  • Adrian E. Raftery
  • ISusan L. Rosenkranz
چکیده

The Bayes factor is employed to select covariates for a hierarchical model applied to a collection of hospital admission counts. Integrals representing the Bayes factor numerator and denominator marginal probabilities are intractable for the model used. We examine three approaches to integral approximation: Laplace approximation, Monte Carlo integration, and a Markov chain Monte Carlo (MCMC) approach. Laplace-approximated Bayes factors are found to be nearly unbiased, and can be obtained very quickly. MCMC was used to implement an importance sampling scheme. The resulting approximate Bayes factors exhibited some bias and were obtained at a relatively high cost in computer time. Software to implement the Laplace approximation is available from StatLib.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Small Area Estimation of the Mean of Household\'s Income in Selected Provinces of Iran with Hierarchical Bayes Approach

Extended Abstract. Small area estimation has received a lot of attention in recent years due to necessity demand for reliable small area statistics. Direct estimator may not provide adequate precision, because sample size in small areas is seldom large enough. Hence, by employing models that can use auxiliary information and area effects in descriptions, one can increase the precision of direct...

متن کامل

A hierarchical model of non-homogeneous Poisson processes for Twitter retweets

We present a hierarchical model of non-homogeneous Poisson processes (NHPP) for information diffusion on online social media, in particular Twitter retweets. The retweets of each original tweet are modelled by a NHPP, for which the intensity function is a product of time-decaying components and another component that depends on the follower count of the original tweet author. The latter allows ...

متن کامل

Comparison of Three Decision-Making Models in Differentiating Five Types of Heart Disease: A Case Study in Ghaem Sub-Specialty Hospital

Introduction: cardiovascular diseases are becoming the main cause of mortality and morbidity in most countries. This research goal was to predict the types of heart diseases for more accurate diagnosis by data mining and neural network technics. Method: This research was an applied-survey study and after data preprocessing, three approaches of neural network, decision making tree and Bayes simp...

متن کامل

A Hierarchical Bayes Approach to Variable Selection for Generalized Linear Models

For the problem of variable selection in generalized linear models, we develop various adaptive Bayesian criteria. Using a hierarchical mixture setup for model uncertainty, combined with an integrated Laplace approximation, we derive Empirical Bayes and Fully Bayes criteria that can be computed easily and quickly. The performance of these criteria is assessed via simulation and compared to othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007